$(\eta^3$ -Pyranyl)TpMo(CO)₂ Complexes as Chiral Scaffolds for the Enantiocontrolled Construction of 2,3,6-Trisubstituted Dihydropyrans (Tp = **Trispyrazolylborate**)

Jingjun Yin, Isidro Llorente,[†] Lawrence A. Villanueva,[‡] and Lanny S. Liebeskind*

> Sanford S. Atwood Chemistry Center Emory University, 1515 Pierce Drive Atlanta, Georgia 30322-2210

> > Received July 21, 2000

 $TpMo(CO)_2(3-oxopyranyl)$, 1, is a potent chiral synthetic scaffold (Figure 1). As described previously, conversion of 1 into the η^3 -pyranylmolybdenum complex 2 sets the stage for an efficient and enantiocontrolled [5 + 2] cycloaddition leading to oxabicyclo[3.2.1]octenes of high enantiopurity.¹ Herein is demonstrated a second example of the synthetic power of chiral scaffold 1-the efficient and enantiocontrolled construction of 2,3,6-trisubstituted dihydropyrans proceeding through a novel, stepwise functionalization of 2. 2,3,6-Trisubstituted dihydropyran rings are found in a large number of important natural products.² Despite the many efforts directed toward the synthesis of dihydropyrans, very few general methods to synthesize 2,3,6trisubstituted derivatives are known.³

Racemic 3-oxopyranyl complex (\pm) -1 is easily prepared on large scale from 6-acetoxydihydropyran-3-one, and the separate antipodes of 1 are readily available in multigram quantity and high ee^1 from the easily resolved diastereometric (*R*)-pantolactonesubstituted-2H-pyran-3(6H)-ones.⁴ Regiocontrolled functionalization of 1 began with the high yield conversion of the (+)antipode into the η^3 -pyranyl complexes (-)-2a,b by the addition of a Grignard reagent (MeMgBr: -78 to 0 °C; PhMgBr: -40 to 0 °C) to the carbonyl group of 1 (Scheme 1). A direct quench of the MeMgBr reaction mixture with trifluoroacetic anhydride/ triethylamine gave 2a in 82% overall yield and 95% ee (from a 95% ee sample of (+)-1). For the PhMgBr system, it proved expeditious to isolate the 3° alcohol resulting from addition of the Grignard to 1 (83% yield) and then treat it with trifluoroacetic anhydride/triethylamine to produce 2b in 90% yield and 97% ee (from a 97% ee sample of (+)-1).

Treatment of (±)-2a with Br₂ at -78 °C generated a reactive, uncharacterized dibromo adduct. Addition of 2.5 equiv of MeMgBr to dibromo-2a produced a quantitative yield of 2,3,6trimethyl-dihydropyranylmolybdenum complex (\pm) -3. Extending this chemistry to the sequential and selective addition of two different Grignard reagents was not successful. However, treatment of 2a and 2b with 1.1 equiv of Br₂ at -78 °C followed by a methoxide quench (40% NaOMe in MeOH) gave the stable and isolable 3-substituted-2,6-dimethoxydihydropyranylmolybdenum complexes 4a and 4b in high yield (98 and 94%, respectively). These compounds proved to be excellent precursors to a variety of trisubstituted pyrans, which can be generated in high enantiopurity.

Figure 1.

Scheme 1. Activation of 1 for Sequential Functionalization

Racemic and chiral non-racemic variants of the 2,6-dimethoxy-3-substituted pyranylmolybdenum complexes 4a,b were useful for the controlled, stepwise introduction of substituents to the pyran ring (Table 1). Unusually selective abstraction of the methoxy group adjacent to the 3-substituent of 4a (>84 to 1) and 4b (100:0) was achieved upon addition of 1.0 equiv of Ph₃- CPF_6 to a solution of **4a** or **4b** in dichloromethane at -78 °C then warming to 0 °C over 5 min. The resulting cationic dienes 5a,b were precipitated with methyl tert-butyl ether (MTBE), washed, and redissolved in THF prior to subsequent functionalization. Cationic diene complex **5a** ($R^1 = Me$) rapidly decomposed upon isolation, so it was made and freshly used every time.

The very high selectivity for abstraction of the 2-methoxy group of complexes 4a/b might be a function of ground-state energy steric acceleration of abstraction of the more hindered leaving group. It can also be rationalized using the frontier molecular orbital arguments proposed earlier by Eisenstein, Butler, and Pearson⁵ to explain selective formation of cyclohexadienyliron complexes by hydride abstraction. Compared to abstraction of the 6-methoxy group, abstraction of the 2-methoxy group leads to a diene ligand whose HOMO/LUMO orbital pair provides a stronger bonding interaction with the complementary LUMO/ HOMO d-orbitals of the metal.⁶ These interactions are presumably reflected in the transition structures for methoxy abstraction.

The cationic dienes 5a,b were treated with R²M to give intermediates 6. Complexes 6 were sensitive to work up and purification, and were either used directly for the next step, or were only subjected to a brief work up to remove inorganic salts and volatile byproducts. Nevertheless, intermediate **6i** ($R^2 = Et$) was fully characterized. Methoxy abstraction from 6 was accomplished with HBF₄, which, unlike Ph₃CPF₆, could be used in an excess amount with THF or dichloromethane and MTBE as solvents and be readily removed after reaction. Subsequent treatment of the cationic dienes derived from 6 with nucleophiles $R^{3}M$ led to 2,3,6-trisubstituted complexes 7, which were obtained in moderate to high overall yields in four simple steps. Therefore, using the sequential methoxy abstraction protocol, a large variety of different functional groups can be introduced in a controlled fashion at the 2- and 6-positions of either 4a or 4b (Table 1).

[†] Current Address: Asturpharma, Silvota, Asturias, Spain. E-mail: aspharma@asturnet.es

Current Address: Needle & Rosenberg, P. C., Atlanta, GA. E-mail: villanueva@needlepatent.com

Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811–5812.
 Westley, J. W., Ed. Polyether Antibiotics. Naturally Occurring Acid

Ionophores; Marcell Dekker: New York, 1982; Vol. 1: Biology; Westley, J. W., Ed. Polyether Antibiotics. Naturally Occurring Acid Ionophores; Marcell

<sup>Dekker: New York, 1983; Vol. 2: Chemistry.
(3) Mohr, P.</sup> *Tetrahedron Lett.* 1995, *36*, 2453–2456; Burke, S. D.; Ng, R. A.; Morrison, J. A.; Alberti, M. J. J. Org. Chem. 1998, *63*, 3160–3161. (4) Knol, J.; Jansen, J. F. G. A.; Vanbolhuis, F.; Feringa, B. L. Tetrahedron Lett. 1991, 32, 7465-7468.

⁽⁵⁾ Eisenstein, O.; Butler, W. M.; Pearson, A. J. Organometallics 1984, 3, 1150-1157.

⁽⁶⁾ Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: London, 1976.

Table 1. Regio- and Stereocontrolled Synthesis of 2,3,6-Trisubstituted Pyranylmolybdenum Complexes^a

i. Ph₃CPF₆ (1.00 equiv), -78 °C to 0 °C, CH₂Cl₂; ii. R²M, THF, -78 °C, 15 min iii. HBF₄, (THF)-MTBE, 0 °C, 5 min; iv. R³M, -78 °C, THF.

Entry	4	R ² M, R ³ M	7, Yld(%), ^b ee(%)	
1°	4 a	MeMgBr, EtMgBr	7a, 82,	
2 ^c		MeMgBr, VinylMgBr	7Ь, 70,	98 ^e
3°		VinylMgBr, MeMgBr	7c, 74,	
4 ^d		PhMgBr, VinylMgBr	7d, 73,	
5₫		MeO ₂ CCH ₂ Li, PhMgBr	7e, 72,	
6 ^d		PhC≡CLi, PhCOCH2Li	7f, 37,	
7 ^d		PhC≡CLi, MeOOCCH2Li	7g, 43,	
8 ^d	-	PhC≡CLi, MeMgBr	7h, 80,	
9 ^d	*	EtMgBr, N≡CNBu4	7i, 85,	98 ^f
10 ^d	*	EtMgBr, sec-ButylMgCl	7j , 90,	
11 ^d	Ħ	MeOOCCH2Li, PhCOCH2Li	7k, 65,	
12 ^d	4b	EtMgBr, VinylMgBr	71, 63,	97 ^g
13 ^d		VinylMgBr, EtMgBr	7m, 63,	

^a For enolates, 3.0 equiv were used; for others, 1.1-1.5 equiv were used; ^b Overall yield from 4a/b; ^c Method A: 6 was used directly for the next step without isolation; ^d Method B: the reaction mixture of 6 was passed through a pad of silica gel (treated with 5% Et₃N/hexane) with ether, concentrated, and used for the next step; e Starting from 4a that was synthesized from (+)-2a in 98% ee; ^fStarting from 4a that was synthesized from (-)-2a of 98% ee. g Starting from 4b that was synthesized from (-)-2b of 97% ee.

The generality of this method is demonstrated by the wide range of functional groups introduced using these highly selective methoxy abstractions with Ph₃CPF₆ or HBF₄, and the high yield additions of readily available nucleophiles such as Grignard reagents, lithium reagents, enolates, and cyanide. More importantly, (+)-2a led to (+)-7b in 98% ee (>99.9% ee after one recrystallization), and (-)-2a gave (-)-7i in 98% ee (>99.9% ee after one recrystallization), and (+)-2b led to (-)-7l in 97% ee (entries 2, 9, 12).

Various stereo- and regiocontrolled demetalations of TpMo-

Scheme 2. Enantiospecific Synthesis of the Ambruticin Intermediate, (+)-9

(CO)₂(allyl) complexes have been described elsewhere.^{1–7} Therefore, this general and efficient enantiocontrolled synthesis of 2,3,6trisubstituted hydropyranyl molybdenum complexes should provide 2,3,6-trisubstituted hydropyrans of high enantiopurity upon demetalation. The potential of this current methodology was demonstrated by the synthesis of (+)-9, a key intermediate that was used in the total synthesis of natural (+)-ambruticin by Kende et al. (Scheme 2).8 A 10 mM solution of pyranylmolybdenum complex (-)-7i (98% ee) and 2.0 equiv of HOAc in CH₂Cl₂ was irradiated and gave the protodemetalation product 8 in 78% yield (8% of the less substituted alkene protodemetalation product was also formed, but not separated).⁹ Hydrolysis of the cyano group of 8 gave (+)-9 in 78% yield over two steps in 98% ee. Its spectroscopic data are consistent with those reported in the literature ($[\alpha]_D = +168^\circ$, c 0.18 EtOH, 98% ee; lit. $[\alpha]_D =$ +169.4 °, c 0.85 EtOH, >98% ee).

Although some chiral, non-racemic η^3 -pyranylmolybdenum complexes exhibit racemization,¹ no racemization was observed for those complexes studied herein. Racemization was previously explained via an η^3 -to- η^1 slippage of the η^3 -pyranylmolybdenum followed by Lewis acid induced or thermal opening of the η^{1} -2H-pyran complex.¹ Although a firm understanding of the process is not yet in hand, the ease of racemization appears to be a function of the substitution pattern on the pyranyl complex, which affects the ease with which η^3 -to- η^1 slippage and subsequent η^1 -2H-pyran complex ring opening can occur.

In conclusion, a novel method for elaboration of 2,3,6trisubstituted dihydropyrans from chiral, non-racemic TpMo(CO)2-(3-oxopyranyl) complexes has been disclosed. The latter functions as a chiral scaffold, and could be amenable to diversity-based synthesis if practical extensions to solid-state chemistry can be developed.

Acknowledgment. This work was supported by Grant #GM43107, awarded by the National Institute of General Medical Sciences, DHHS.

Supporting Information Available: A complete description of the synthesis and characterization of all compounds prepared in this study (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA002694H

(7) The first general description of synthetically useful transformations of TpMo(CO)₂(η^3 -allyl) and TpMo(CO)₂(η^4 -diene) complexes is documented within the Supporting Information for Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. **1996**, *118*, 897–898; Pearson, A. J.; Douglas, A. R. Organometallics **1998**, *17*, 1446–1448; Moretto, A.; (a) Liebeskind, L. S. J. Org. Chem. 2000, in press.
 (8) Kende, A. S.; Mendoza, J. S.; Fujii, Y. Tetrahedron 1993, 49, 8015-

8038.

(9) Treatment of a dilute solution of complexes 7 in CH₃CN with 10 equiv of conc HCl produces the less substituted protodemetalation product with delivery of the proton from the TpMo(CO)₂ face, while irradiation in CH₂Cl₂ with 1.1 equiv of HOAc produces the more substituted protodemetalation product. Details will be provided in a future publication.